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Abstract

Recent study on detecting facial action units (AU) has
utilized auxiliary information (i.e., facial landmarks, rela-
tionship among AUs and expressions, web facial images,
etc.), in order to improve the AU detection performance. As
of now, no semantic information of AUs has yet been ex-
plored for such a task. As a matter of fact, AU semantic de-
scriptions provide much more information than the binary
AU labels alone, thus we propose to exploit the Semantic
Embedding and Visual feature (SEV-Net) for AU detec-
tion. More specifically, AU semantic embeddings are ob-
tained through both Intra-AU and Inter-AU attention mod-
ules, where the Intra-AU attention module captures the rela-
tion among words within each sentence that describes indi-
vidual AU, and the Inter-AU attention module focuses on the
relation among those sentences. The learned AU semantic
embeddings are then used as guidance for the generation of
attention maps through a cross-modality attention network.
The generated cross-modality attention maps are further
used as weights for the aggregated feature. Our proposed
method is unique in that the semantic features are exploited
as the first of this kind. The approach has been evaluated on
three public AU-coded facial expression databases, and has
achieved a superior performance than the state-of-the-art
peer methods.

1. Introduction

Facial action units (AUs) defined in the Facial Action
Coding System (FACS)[5] has been widely used for de-
scribing and measuring facial behavior. Automatic action
unit detection has been an essential task for facial analysis,
with a variety of applications in psychological and behav-
ioral research, mental health assessment and human-robot
interaction.

Benefited from the great progress in deep learning re-
search, the performance of AU detection has been im-

Figure 1. An example of the individual AUs, related facial ar-
eas and the corresponding AU semantic descriptions. Red: facial
area/position, Green: action, Yellow: motion direction, and Blue:
motion intensity. As we can see, the AU related facial areas and
their actions are clearly explained in each AU semantic descrip-
tion. The facial area/position, action, motion direction and inten-
sity, and relation of AUs will be automatically encoded in the AU
semantic embedding, as described in Section 3.2.

proved using the deep-model based methods in recent years
[28][30][12][3][19][22][15]. However, the deep-model
based methods are starved for labeled data, whereas AU
annotation is a highly labor intensive and time consum-
ing process, thus many existing works seek to exploit the
auxiliary information for AU detection, which include, for
example, domain knowledge (e.g., probabilistic dependen-
cies between expressions and AUs as well as dependencies
among AUs) [17][18][26]; facial landmarks and expression
labels [13][15], and freely web face images [29]. Although
the performance has a certain improvement when utilizing
those auxiliary information, the AU semantic descriptions
have not yet been explored by any of the previous methods.



FACS provides a complete set of textual descriptions for
AU definition, such a set of AU descriptions provide rich
semantic information, such as which facial area is related
to the individual AU, what intensity and type of action can
be considered as the occurrence of an AU, and what is the
relation among AUs, etc. Such a unique finding motivates
us to explore the textual descriptions as an auxiliary infor-
mation along with the visual information for AU detection.
Figure 1 illustrates an example of AU semantic descriptions
on three AUs. As we can find that two facial areas (chin boss
and lower lip) and two corresponding actions (wrinkle chin
boss and push up the lower lip) involve in the occurrence
of AU17. Besides, we can also obtain the potential relation
among AUs. For example, AU23 occurs in the area of lips,
which share the lower lip with AU17, but they rarely appear
together as different actions applied to the lip (tighten vs
push up). A similar example is AU12 (lip corner puller) vs
AU15 (lip corner depressor). Those semantic information
(i.e., facial area/position, action, motion direction/intensity,
and relation of AUs) will be automatically encoded in the
AU semantic embedding, which will be described in Sec-
tion 3.2.

Two recent works [2][24] have been developed to explic-
itly model the label relationships from the semantic label
embeddings using a graph convolutional network (GCN)
based method for multi-label image recognition. These two
works have demonstrated that explicitly modeling the label
relationships from the label embeddings is beneficial for the
discovery of meaningful locations and discriminative fea-
tures. However, both of them rely on the manually defined
label relation graph, as used in the GCN module, making
them incapable of applications without the ground truth la-
bel relation graph.

Inspired by the self-attention mechanism from trans-
former [20] and Inter/Intra attention modules in [7], we pro-
pose a novel framework to exploit the Semantic Embedding
and Visual feature (SEV-Net) for AU detection, which will
automatically learn the AU relations from the AU semantic
descriptions. First of all, in order to capture the seman-
tic relations among AUs, we introduce two new attention
modules, which are so-called Intra-AU and Inter-AU atten-
tion module, where the Intra-AU attention module targets
at the word-level attention among the AU semantic descrip-
tions (i.e., <lip corner> −<raised>), while the Inter-AU
attention module focuses on the relation among sentences
(i.e., both AU12 and AU15 occur at the lip corner, but they
cannot happen concurrently because opposite actions are
associated with the corresponding AUs (puller vs depres-
sor)). Second, the learned AU semantic embeddings are fur-
ther combined with the visual features to generate the atten-
tion map through a cross-modality attention module. Unlike
the traditional self-attention methods, the cross-modality at-
tention module benefits from the rich semantic information

(i.e.,facial area/position, action, motion direction/intensity,
and relation of AUs), hence being able to learn more useful
and discriminative features from more meaningful facial ar-
eas. The attention maps are further utilized as weights for
the aggregated feature for AU classification.

In summary, the contributions of this work are two-fold:

1. We proposed a unified framework that applying the
attention into three different levels to capture differ-
ent AU semantic relations: Intra-AU attention (Words
level: location, action type/intensity, etc), Inter-AU at-
tention (Sentence level: AU relations, can two AUs
happen concurrently?) and cross-modality attention
(Modality level: connecting the AU semantic embed-
ding to visual features). As a result, the model is able
to learn more discriminative features from more mean-
ingful areas.

2. To the best of our knowledge, this is the first work to
introduce AU semantic description as an auxiliary in-
formation for AU detection, achieving significant im-
provement for AU detection than SOTA in three widely
used datasets.

2. Related works
AU detection with auxiliary information Current works
on facial action (AU) recognition typically rely on fully AU-
annotated training data. However, as compared to the other
computer vision tasks, the publicly available AU-labeled
datasets are quite small due to the labor-intensive work on
AU annotation. Therefore, the research community started
to utilize the auxiliary information for robust AU detection.
Zhao et al.[29] proposed a weakly spectral clustering ap-
proach to use freely downloaded web images for learning
action units. An embedding space is learned by exploiting
web images with inaccurate annotations, and then a rank-
order clustering method is applied to re-annotate these im-
ages for training AU classifiers. Peng and Wang[17] utilized
the domain knowledge for AU detection. Here, the domain
knowledge refers to the probabilistic dependencies between
expressions and AUs as well as dependencies among AUs.
To train a model from partially AU-labeled and fully ex-
pression labeled facial images, Peng and Wang[18] used the
dual learning method to model the dependencies between
AUs and expressions for AU detection. By leveraging prior
expression-independent and expression-dependent proba-
bilities on AUs, Zhang et al.[26] proposed a knowledge-
driven method for jointly learning multiple AU classifiers
without AU annotations, and achieved a good performance
on five benchmark databases. Li et al.[11] designed an
attention map and facial area cropping network based on
facial landmarks. Niu et al.[15] proposed to use the fa-
cial landmarks as person-specific shape regularization for



Figure 2. The overall framework of the proposed method. The visual features are first extracted by a backbone network. The AU embed-
dings are obtained through feeding the AU description sentence to an Intra-AU attention module to capture the relation among words in
each sentence, followed by an Inter-AU attention module to capture the relation among AU sentences. The learned AU embeddings and
visual features are combined together to generate the attention map through a cross-modality attention module, and the attention maps will
be further utilized as weights for the aggregated feature. Finally, the classifier is applied for AU detection.

AU detection, where the features extracted from the facial
landmarks guide the extraction of visual features through
an orthogonal regularization, thus the model is subject-
independent, as well it is generalizable to unseen subjects.

Note that AU textual descriptions provide rich AU se-
mantic information about facial area/position, action, mo-
tion direction/intensity, and relation of AUs, but there is no
reported work that utilizes such an auxiliary information for
AU detection.

Learning label relation from label semantic embedding
Several previous methods are proposed to explicitly model
the label relationship from the the label semantic repre-
sentation for multi-label classification. Chen et al.[2] pro-
posed to explicitly model the label dependencies through
a GCN from prior label representations for multi-label im-
age recognition. As a result, the proposed method can ef-
fectively alleviate over-fitting and over-smoothing issues.
You et al.[24] proposed a GCN based method to learn se-
mantic label embeddings for multi-label classification. The
semantic label embeddings explicitly model the label re-
lationships, and further used as a guidance for learning
cross-modality attention maps. As to AU detection, Li
et al.[10] proposed to incorporate a GCN based AU rela-
tionship model to the visual features for the representation
learning. To the best of our knowledge, there is no reported

method that exploits the AU semantic description for AU
detection so far.

[2] and [24] are the most related works, even though
they target on the task of image classification. Our method
differs significantly in following facts: (1) both [2] and
[24] rely on a manually constructed label relation graph,
while our method does not. Instead, our method automati-
cally learn the AU relations from the AU semantic descrip-
tions. (2) In contrast to [2][24] that utilize a graph neu-
ral network to model the label dependencies, our method
utilizes the attention mechanism at three different levels:
Intra-AU(Words level), Inter-AU(Sentence level) and Cross-
modality(Modality level), thus capturing the rich semantic
information for AU detection. The ablation studies in sec-
tion 4.4 has demonstrated that our method is move effective
than [2][24] in capturing the AU relations.

3. Proposed method
Fig 2 gives an overview of our proposed framework. It

consists of three parts: image feature encoder, Intra-AU and
Inter-AU attention-based encoders, and cross-modality at-
tention network. As shown in the top part of Fig 2, a CNN-
based backbone is used to encode the g iven image into
visual features V. The bottom part shows the textual fea-
ture encoding process. The Inter-AU attention and Intra-AU
attention encoders are Transformer-based encoders, which



capture the intra-AU relations and inter-AU relations re-
spectively. The cross-modality attention network, followed
by a classifier, captures the cross-modality relations be-
tween visual features and textual features. In the follow-
ing, we describe the individual modules of our framework
as well as the loss functions.

3.1. Image Encoding

We first encode the given image I to the spatial visual
features V = {V1, . . . ,Vw×h},Vi ∈ Rdv with a backbone
model, where w × h is the size of feature, and dv is the
dimension of each feature channel in Vi.

3.2. AU Semantic Encoding

The overall AU semantic encoding contains both an
Intra-AU encoder and an Inter-AU encoder, where the Intra-
AU encoder is shared by words among AU description sen-
tence, and the Inter-AU encoder is shared by AU sentence
embeddings.

Input Embeddings The purpose of Intra-AU encoder is
to model the intra-relations among the words in AU se-
mantic description. The input to the Intra-AU encoder in-
cludes AU descriptions S = {S1, . . . , SNS

}, where NS is
the number of AU descriptions. For each AU description
Si, we use the WordPiece tokenizer [21] to split it into to-
kens {si,1, . . . , si,Ni}, whereNi is the number of tokens for
each AU description. Apart from the token embeddings, we
also assign positional encoding psi,j to each word si,j . In
particular, for token si,j , its input representations wi,j is the
sum of its trainable word embedding, segment embedding,
and positional embedding:

wi,j = fLN
(
WordEmb(si,j) + SegEmb(j) + psi,j

)
(1)

where fLN(·) stands for layer normalization [1].

Intra-AU Encoder Following the embedding layers, we
apply the multi-layer transformer encoder to encode each
AU description Si. Like BERT [4], our Inter-AU encoder
is used to encode contextual information for tokens within
each sentence. Each layer of the Intra-AU encoder is the
same as the vanilla transformer encoder layer [20]. Let
W l = (w1, · · · ,wNi

) be the encoded features at the l-th
transformer layer, W 0 being the input layer. The features at
the (l + 1)-th layer are obtained by applying a transformer
block defined as:

H l+1 = f lLN

(
W l + f lSelf-Att(W

l)
)

(2)

W l+1 = f lLN

(
H l+1 + f lFF(H

l+1)
)

(3)

where fSelf-Att(·) is the multi-headed self-attention module
introduced in [1], which makes each token attend the other

tokens with attention weights. The feed-forward (FF) sub-
layer fFF(·) in Eq. 3 is further composed of two fully-
connected (FC) sub-layers: f lFC2

(fGELU(f
l
FC1

(·))), where
fGELU represents the GeLU activation [9].

To obtain a fixed-length sentence representation for each
AU, we get the AU representation wLIntra

i by computing
the mean of all outputs among each sentence: wLIntra

i =
1
Ni

∑Ni

j wIntra
j , where LIntra is the final layer of Intra-AU

encoder, Ni is the number of tokens in each AU sen-
tence description. After the Intra-AU encoding, for AU
descriptions {S1, . . . , SNS

}, we have a set of embeddings:
{wLIntra

1 , . . . ,wLIntra
NS
}.

Inter-AU Encoder The Inter-AU encoder is designed
to exchange information across multiple AU embeddings.
Like Intra-AU encoder, we also apply the multi-layer trans-
former network to encode the input embeddings. Note that,
the input to the Inter-AU encoder is the set of embeddings
from the Intra-AU encoder, not tokens. The final output of
Inter-AU encoder represents as {wLInter

1 , . . . ,wLInter
NS
}, where

LInter is the final layer of Inter-AU attention encoder, NS is
the number of AUs.

3.3. Cross-Modality Attention

From the AU semantic learning, we can obtain the
AU embeddings, which encodes information of both Intra-
/Inter-AU relation and area of interest. To fully utilize the
rich information encoded in AU semantic embedding, we
let the AU embeddings guide the generation of attention
maps through the cross-modality attention module, defined
as:

zik = ReLU
( VT

i w̄LInter
k

||Vi|| · ||w̄LInter
k ||

)
(4)

where k ∈ {1, 2, ..., Ns},i ∈ {1, 2, ..., w × h}, || · || rep-
resents the norm function, w̄LInter

k is the linear projection of
wLInter

k from Rdw to Rdv , and Vi ∈ Rdv . We can obtain the
category-specific cross-modality attention map zik for AUk

at location i, which is further normalized to:

αi
k =

zik∑w×h
i=1 zik

(5)

The normalized cross-modality attention map can be further
utilized as weight for the aggregated feature, because the
high value in a specific location i of AUk can be interpreted
as the location i is more important than other locations for
recognizing AUk, thus the model needs to pay more atten-
tion to that location when detect AUk.

xk =

w×h∑
i=1

αi
kVi (6)



where, xk ∈ Rdv is the final feature vector for AUk. From
this step, we can obtain Ns features for each input image.

3.4. AU detection

A classifier fC : Rdv → R1 is then shared by the Ns

image features for estimating probability of AUs. A binary
cross-entropy (BCE) loss function is used as the final loss
function for AU recognition:

LBCE = − 1

N

N∑
i=1

Ns∑
k=1

(
yik × log(ŷik)+

(1− yik)× log(1− ŷik)
)

(7)

where N is the total number of training images, Ns is the
number of AU, yik and ŷik represent the ground truth label
and prediction for AUk in image i respectively.

4. Experiments
To evaluate our proposed method, we perform exper-

iments on three public benchmark datasets: BP4D[25],
DISFA[14] and BP4D+[27]. By comparing with the GCN
based methods[2][24], we validate the effectiveness of the
proposed Intra-AU and Inter-AU attention modules for au-
tomatically learning of the AU relations from AU semantic
description. We also demonstrate that AU semantic embed-
ding is beneficial for the discovery of more meaningful fa-
cial areas through visualization of the cross-modality atten-
tion maps.

4.1. Data

BP4D[25] is a widely used dataset for evaluating AU
detection performance. The dataset contains 328 2D and
3D videos collected from 41 subjects (23 females and 18
males) under eight different tasks. As mentioned in the
dataset, the most expressive 500 frames (around 20 sec-
onds) are manually selected and labeled for AU occurrence
from each one-minute long sequence, resulting in a dataset
of around 140,000 AU-coded frames. For a fair compari-
son with the state-of-the-art methods, a three-fold subject-
exclusive cross validation is performed on 12 AUs.

DISFA[14] is another benchmark dataset for AU detec-
tion, which contains videos from left view and right view of
27 subjects (12 females, 15 males). 12 AUs are labeled with
AU intensity from 0 to 5, resulting in around 130,000 AU-
coded images. Following the experimental setting in [10], 8
of 12 AUs with intensity greater than 1 from the left camera
are used. F1-score is reported based on subject-exclusive
3-fold cross-validation.

BP4D+[27] is a multimodal spontaneous emotion
dataset, where high-resolution 3D dynamic model, high-
resolution 2D video,thermal (infrared) image and physio-
logical data were acquired from 140 subjects. There are

58 males and 82 females, with ages ranging from 18 to 66
years old. Each subject experienced 10 tasks corresponding
to 10 different emotion categories, and the most facially-
expressive 20 seconds from four tasks were AU-coded from
all 140 subjects, resulting in a database contains around
192,000 AU-coded frames. Following a similar setting in
BP4D dataset, 12 AUs are selected and performance of 3-
fold cross-validation is reported.

4.2. Implementation details

All the face images are aligned and cropped to the size of
256×256 using affine transformation based on the provided
facial landmarks, randomly cropped to 224× 224 for train-
ing, and center-cropping for testing. Random horizontal flip
is also applied during training. To analyze the impact of our
proposed method, we use the ResNet-18[8] architecture as
the backbone and baseline.

Based on the FACS manual, we have summarized 15
AU semantic descriptions (i.e., AU1, AU2, AU4, AU6, AU7,
AU9, AU10, AU12, AU14, AU15, AU17, AU23, AU24,
AU25, AU26). The details are listed in the supplemental
material.

The Intra-AU encoder has the same configuration as
BERTLarge. More specifically, we set the number of lay-
ers LIntra to 24, the hidden size to 1,024, and the number
of heads to 16. The parameter of the Intra-AU encoder is
initialized with pre-trained parameter1, and freezed during
training. For the Inter-AU encoder, we build upon the en-
coder block as used in transformer[20]. Note that the input
here is the sentence embedding, rather than tokens. We set
the number of layers LInter to 2, the hidden size to 1024, and
the number of heads to 6. The size of final AU semantic
embedding is 768, which is then projected to 512 through a
linear function, and the visual features from ResNet-18 we
used is 7× 7× 512.

All the modules, except Intra-AU encoders, are ran-
domly initialized. We use an Adam optimizer with initial
learning rate of 0.001, and the learning rate is decayed after
each epoch with momentum 0.85. The batch size is 100,
and we train the model for 50 epochs with early stopping.
We implement our method with the Pytorch [16] framework
and perform training and testing on the NVIDIA GeForce
2080Ti GPU.

To evaluate the performance, we use the F1-score for
comparison study with the state of the arts. F1-score is de-
fined as the harmonic mean of the precision and recall. As
the distribution of AU labels are unbalanced, F1-score is a
preferable metric for performance evaluation.

4.3. Comparison with related methods

We compare our method to alternative methods, includ-
ing Liner SVM (LSVM) [6], Joint Patch and Multi-label

1https://github.com/UKPLab/sentence-transformers



Table 1. F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D database. Bold
numbers indicate the best performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg
LSVM [6] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 [64.3] 18.4 33.0 19.4 20.7 35.3
JPML[28] 32.6 25.6 37.4 42.3. 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9
DRML[30] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-net[11] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
DSIN [3] [51.7] 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 [62.9] 38.8 41.6 58.9
JAA [19] 47.2 44.0 54.9 [77.5] 74.6. [84.0] 86.9 61.9 43.6 60.3 42.7 41.9 60.0
OF-Net [22] 50.8 [45.3] [56.6] 75.9 75.9 80.9 88.4 63.4 41.6 60.6 39.1 37.8 59.7
LP-Net [15] 43.4 38.0 54.2 77.1 [76.7] 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
SRERL [10] 46.9 [45.3] 55.6 77.1 78.4 83.5 [87.6] 63.9 [52.2] 63.9 [47.1] [53.3] [62.9]
Ours (SEV-Net) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

Table 2. F1 scores in terms of 8 AUs are reported for the proposed method and the state-of-the-art methods on DISFA dataset. Bold
numbers indicate the best performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg
LSVM[6] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8
DRML[30] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-net[11] 41.5 26.4 66.4 [50.7] 80.5 89.3 88.9 15.6 48.5
DSIN[3] 42.4 39.0 [68.4] 28.6 46.8 70.8 90.4 42.2 53.6
JAA[19] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
OF-Net[22] 30.9 34.7 63.9 44.5 31.9 [78.3] 84.7 [60.5] 53.7
LP-Net[15] 29.9 24.7 72.7 46.8 [49.6] 72.9 [93.8] 65.0 [56.9]
SRERL [10] [45.7] [47.8] 59.6 47.1 45.6 73.5 84.3 43.6 55.9
Ours (SEV-Net) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

(JPML) [28], Deep Region and Multi-label (DRML) [30],
Enhancing and Cropping Network (EAC-net)[11], Deep
Structure Inference Network (DSIN) [3], Joint AU Detec-
tion and Face Alignment (JAA) [19],Optical Flow network
(OF-Net) [22], Local relationship learning with Person-
specific shape regularization (LP-Net) [15], and Seman-
tic Relationships Embedded Representation Learning ( SR-
ERL) [10].

Table 1 shows the results of different methods on the
BP4D database. We can see that our method achieves the
best accuracy in recognizing AU1, AU2, AU4, AU6, AU10,
and AU15, and outperforms all of the SOTA methods. Com-
pared with the patch or region-based methods: JPML and
DRML, our method achieves 18.0% and 15.6% higher per-
formance on BP4D database. Compared with JAA and LP-
Net, which used facial landmarks as a joint task or regu-
larization for AU detection, our method still shows 3.9%
and 2.9% improvement in terms of F1-score on the BP4D
database. SRERL is the previous state-of-the-art method,
and related to our method in terms of the use of AU relation-
ships. But our method is significantly different with the SR-
ERL: First, SRERL only use the visual modality, while our
method not only use both the visual and textual modalities,

but also consider the correlation through the cross-modality
attention network; Second, a manually constructed AU re-
lation graph from label distribution is needed for the GCN
module in SRERL; while our model does not rely on the
pre-defined AU relation graph, instead, it will automatically
learn the AU relations from the AU semantic description
through the Intra-AU and Inter-AU attention modules. With
regard to the performance, our method is 1.0% higher in
terms of F1-score than the SRERL.

The performance comparison in terms of 8 AUs on the
DISFA database are reported in Table 2. As we can see, our
method achieves 58.8% F1-score, outperforming all of the
related works. Our method shows 32.1%, 2.8% and 1.9%
improvement than DRML, JAA and LP-Net respectively.
As compared to the related work of SRERL, our method
shows 2.9% improvement.

Our method is also evaluated on the BP4D+ database,
which contains more AU-labeled frames from more sub-
jects, and the results are shown in Table 3. Except us-
ing the reported results from [23], we also report the re-
sults of ML-GCN[2] and MS-CAM[24] based on our own
implementation. Note that both ML-GCN and MS-CAM
are not originally designed for AU detection, we extend



Table 3. F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D+ database. Bold
numbers indicate the best performance; bracketed numbers indicate the second best; * indicate the result from our own implementation.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg
FACS2D-Net[23] 34.6 32.6 [44.1] 82.1 85.3 87.6 87.2 65.9 44.0 44.3 44.8 [29.6] 56.8
FACS3D-Net[23] [43.0] [38.1] 49.9 82.3 85.1 87.2 87.5 66.0 48.4 [47.4] 50.0 31.9 59.7
ML-GCN[2]* 40.2 36.9 32.5 84.8 [88.9] 89.6 89.3 81.2 [53.3] 43.1 55.9 28.3 60.3
MS-CAM[24]* 38.3 37.6 25.0 [85.0] 90.9 90.9 [89.0] [81.5] 60.9 40.6 [58.2] 28.0 [60.5]
ResNet18 34.6 34.6 33.1 84.9 87.0 [90.0] 88.9 80.4 [53.3] 38.7 54.7 13.4 57.8
Ours (SEV-Net) 47.9 40.8 31.2 86.9 87.5 89.7 88.9 82.6 39.9 55.6 59.4 27.1 61.5

and re-implement the two methods during our experiments,
more details will be described in Section 4.4. Our method
achieves 61.5%, the highest F1-score when compared with
related methods. It is worth noting that although FACS3D-
Net[23] detects the AUs from the image sequence, our
method still shows 1.8% improvement.

4.4. Ablation study

Self-attention based vs GCN based semantic encoding:
ML-GCN[2] and MS-CMA[24] are the two recently pro-
posed methods that leverage the label semantic embedding
for multi-label classification. In ML-GCN[2], the authors
proposed to explicitly model the label dependencies through
a GCN from prior label representations for multi-label im-
age recognition. MS-CAM[24] is an extension of the ML-
GCN, which not only explicitly models the label relation-
ships, but also adds a cross-modality attention module be-
tween the visual features and label embeddings. It is worth
noting that a manually constructed graph (label relation) is
necessary for both ML-GCN and MS-CAM. Although they
are not originally designed for AU detection, the framework
can be extended for AU detection. To demonstrate the ef-
fectiveness of the proposed Intra-AU and Inter-AU atten-
tion encoding module of our proposed method, we extend
and re-implement the ML-GCN and MS-CAM methods for
comparison. As a pre-defined graph is needed for the GCN
module in both the ML-GCN and MS-CAM, we manually
construct such a graph that starts from computing the Pear-
son correlation coefficient (PCC) between each pair of the
AUs in the dataset, and then converts the AU relationship
into positive and negative connections based on two thresh-
olds (we use 0.2 and -0.03 for positive and negative thresh-
olds respectively in our experiment, the same setting can be
found in [10] as well).

The result is reported in Fig.3. As we can see, ML-GCN
clearly shows improved performance than the ResNet-18
baseline in three datasets, demonstrating the effectiveness
of adding the GCN modeled label relations for detection.
Compared to the ML-GCN, MS-CAM achieves even bet-
ter performance. Except the extra cross-modality attention
module, MS-CAM is similar to ML-GCN in terms of the

GCN based label relation encoding, so the improved perfor-
mance can be used to demonstrate that the cross-modality
attention mechanism is beneficial for the combination of se-
mantic embedding and visual features.

Our method also contains a cross-modality attention
module, however, it is significantly different with MS-
CAM in how to encoder the semantic information: our
method does not rely on the manually constructed AU re-
lation graph, instead, it automatically learns the AU relation
from the AU semantic descriptions through our Intra-AU
and Inter-AU attention modules. The highest performance
in three datasets demonstrates the effectiveness of the self-
attention based AU semantic encoding.

40
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55

60

65

BP4D DISFA BP4D+

ResNet-18 ML-GCN* MS-CAM* Ours

Figure 3. The comparison between Resnet-18, ML-GCN*[2], MS-
CMA*[24], and our method on three datasets. * indicates the re-
sult from our own implementation.

Visualization of the cross-modality attention maps We
visualize the learned cross-modality attention maps for sev-
eral AUs to illustrate the ability of capturing meaningful
regions for AU detection. We also compare with the at-
tention maps learned in MS-CAM [24] in Fig.4. We can
observe that our proposed method concentrate more on se-
mantic regions, thus it is capable of exploiting more dis-
criminative and meaningful information. For example, both



Figure 4. Visualization of the learned cross-modality attention maps for several AUs (as examples) of different subjects on BP4D, DISFA,
and BP4D+ datasets, respectively. Each row shows the results of the same method; the first and third rows show the attention maps
obtained through MS-CAM [24], and the second and the last rows represent the attention maps obtained by our method. Attention maps
are visualized using heat-map and projected on the original images as well.

AU24: Lip Pressor (third column) and AU12:Lip Corner
Puller (sixth column) occur around the lip area, our model
shows a much better focus on the specific area than the cor-
responding attention maps in MS-CAM. As to the reason
for the difference, we suspect that MS-CAM relies on the
manually constructed AU relation graph, which is usually
constructed using a statistic model from the AU label dis-
tribution; however the distribution is likely to be biased due
to only part of the videos being selected and AU labeled
(for example only 30% frames are AU labeled in the BP4D
dataset). On the other hand, the AU relation is clearly il-
lustrated in the AU semantic description. Our model does
not rely on the statistic metric based AU relation graph, in-
stead it will automatically learn the AU relations through
Intra-AU and Inter-AU attention modules, thus resulting in
a better result.

5. Conclusion

In this paper, we have proposed a novel framework by
combining the visual features and AU semantic embeddings
for the task of AU detection. There exist a number of works
that have applied a variety of auxiliary information (such
as facial landmarks, relation among AUs and expressions,
web facial images, etc.) for AU detection. However, there
is no AU semantic information from the textual domain that
has ever been explored. Our new framework exploits the

AU semantic description, which is believed to have much
more rich information than the traditional binary AU labels,
thus becomes the first of this kind for improving the perfor-
mance of AU detection. In order to make full use of AU
semantic information, we propose two new modules (so-
called Intra-AU and Inter-AU attention modules) to capture
the AU semantic embedding, which is further combined
with the visual features for computing the cross-modality
attention maps. Our proposed method is evaluated on three
widely used facial expression databases, and has achieved
superior performance over the peer SOTA methods.
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